Characterization of a zinc-dependent transcriptional activator from Arabidopsis.
نویسندگان
چکیده
The C2-H2 zinc-finger is a widely occurring DNA binding motif, usually present as tandem repeats. The majority of C2-H2 zinc-finger proteins that have been studied are derived from animals. Here, we characterize a member of a distinct class of plant C2-H2 zinc-finger proteins in detail. A cDNA clone encoding a DNA binding protein from Arabidopsis was isolated by SouthWestern screening. The protein, termed ZAP1 (Zinc-dependent Activator Protein-1), is encoded by a single copy gene, which is expressed to similar levels in root and flower, to a somewhat lower level in stem and to low levels in leaf and siliques. The optimal binding site was determined by random binding site selection, and the consensus sequence found is CGTTGACCGAG. The homology between ZAP1 and other DNA binding proteins is restricted to a repeated region of a stretch of 24 highly conserved amino acids followed by a zinc-finger motif (C-X4-C-X22-23-H-X1-H). The C-terminal zinc-finger region is essential for DNA binding, whereas deletion of the N-terminal one resulted in 2.5-fold reduced binding affinity. Binding of ZAP1 to DNA was abolished by metal-chelating agents. The activation domain as determined in yeast is adjacent to and possibly overlapping with the DNA binding domain. Particle bombardment experiments with plant cells showed that ZAP1 increases expression of a gusA reporter gene that is under control of ZAP1 binding sites. We conclude that ZAP1 is a plant transcriptional activator with a C2-H2 zinc-finger DNA binding domain.
منابع مشابه
Arabidopsis ZIM, a plant-specific GATA factor, can function as a transcriptional activator.
Arabidopsis ZIM is a putative transcription factor containing an atypical GATA-type zinc-finger motif. Transcriptional activation by ZIM was tested using a transient GAL4 fusion assay and measuring the expression of a luciferase reporter in tobacco BY-2 cells. ZIM functioned as a transcriptional activator, and the transactivation domain was found to occur in its N-terminal acidic region.
متن کاملEnhancement of Arabidopsis growth characteristics using genome interrogation with artificial transcription factors
The rapidly growing world population has a greatly increasing demand for plant biomass, thus creating a great interest in the development of methods to enhance the growth and biomass accumulation of crop species. In this study, we used zinc finger artificial transcription factor (ZF-ATF)-mediated genome interrogation to manipulate the growth characteristics and biomass of Arabidopsis plants. We...
متن کاملA Mini Zinc-Finger Protein (MIF) from Gerbera hybrida Activates the GASA Protein Family Gene, GEG, to Inhibit Ray Petal Elongation
Petal appearance is an important horticultural trail that is generally used to evaluate the ornamental value of plants. However, knowledge of the molecular regulation of petal growth is mostly derived from analyses of Arabidopsis thaliana, and relatively little is known about this process in ornamental plants. Previously, GEG (Gerbera hybrida homolog of the gibberellin [GA]-stimulated transcrip...
متن کاملZinc triggers a complex transcriptional and post-transcriptional regulation of the metal homeostasis gene FRD3 in Arabidopsis relatives
In Arabidopsis thaliana, FRD3 (FERRIC CHELATE REDUCTASE DEFECTIVE 3) plays a central role in metal homeostasis. FRD3 is among a set of metal homeostasis genes that are constitutively highly expressed in roots and shoots of Arabidopsis halleri, a zinc hyperaccumulating and hypertolerant species. Here, we examined the regulation of FRD3 by zinc in both species to shed light on the evolutionary pr...
متن کاملNovel Isatin-based activator of p53 transcriptional functions in tumor cells
Bioinorganic medicinal chemistry remains a hot field for research aimed at developing novel anti-cancer treatments. Discovery of metal complexes as potent antitumor chemotherapeutics such as cisplatin led to a significant shift of focus toward organometallic/ bioinorganic compounds containing transition metals and their chelates as novel scaffolds for drug discovery. In that way, transition met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 24 23 شماره
صفحات -
تاریخ انتشار 1996